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ABSTRACT: 

The Android platform became one of the most 

vulnerable targets for cyberattacks in recent times 

due to a rapid surge in malware embedded apps. 

Researchers have investigated various machine 

learning techniques for Android malware detection 

but most of these techniques are inefficient against 

the novel malware. The various problems like code 

obfuscation, the requirement of device root 

privileges, simulated and small size datasets pose 

serious flaws to the existing solutions. This work 

evaluates several machine learning models for 

mitigating these issues using low privileged 

monitorable features sampled in the SherLock 

dataset. The findings of this research conclude that 

the XGBoost clas- sifier is the most accurate in 

detecting the malware compared to other classifiers 

with 93% overall values of precision, recall, and 

accuracy. In terms of FNR values, which sig- nify the 

undetected malware, the XGBoost classifier also 

performs better than the other algorithms with values 

of 7.0%.  
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1. INTRODUCTION 

In recent times, smartphones turn out to be an 

indispensable part of human life as most of the day to 

day life computation is shifting towards smartphones. 

The smartphones are equipped with a variety of 

sensors to provide several applications to the end-

users and generates a huge amount of sensitive and 

confidential data. Android OS, due to its opensource 

distribution, emerged as blazing popularity for 

smartphones in the last few years. This predominant 

operating system platform has established itself not 

only in the mobile world but also in the Internet of 

Things devices and turns out to be the most common 

operating system for smartphones with a market 

share of 86.1% by the end of 2019 [1].    

Malware can also attack an android device by 

performing a privilege escalation attack [2] by which 

an unauthorized person can gain control of the phone 

via the backdoor. Furthermore, malware can perform 

other attacks like phishing and ransomware as well as 

it can affect the device by draining the battery and 

infecting the network interface card. So, there is a 

requirement of efficient security mechanisms for 

malware detection in Android devices. 

Google play store follows a very simple security 

mechanism known as Bouncer [3]. It is a third-party 

program that continuously scans the google play store 

repository for identifying malicious apps. However, 

this may reduce the number of uploaded malicious 

apps but still, it fails to detect most of the vulnerable 
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apps uploaded on the play store. The other security 

mechanisms such as the Android permission system, 

integrated with the Android OS, control the 

permission to access the resources by giving the 

individual permissions to apps statically at the time 

of installation. But the issue with the Android 

permission system is that almost all end-users blindly 

grant permission to apps during installation. 

Botha et al. [4] have applied the security mechanism 

used for PC to smartphones and claim that 

smartphones fail to perform well with these methods 

due to extensive resource utilization. Hence there is 

an increasing need for sophisticated, advanced, 

robust, and automated malware detection systems to 

detect malicious applications. Machine learning 

methods are very recent and well-established 

techniques for malware detection 

on the Android platform. Researchers have 

extensively classified the study of Android malware 

detection using machine learning techniques into two 

ways, static and dynamic analysis based on the 

features set acquired from the apps [5]. 

2. Literature survey 

2.1 Android Platform Architecture 

Android is an open-source software platform based 

on Linux, built for a wide range of devices and form 

factors. The key components of the Android platform 

is shown in be- low diagram. In this figure, violets 

items are modules written in native machine code 

(C/C++), while green items are modules interpreted 

and executed by the Dalvik Virtual Machine(DVM). 

The bottom red layer contains the components of the 

Linux kernel and executes in kernel space. Using a 

bottom-up approach, we briefly address the different 

abstraction layers in the following subsections. 

2.2 The Linux Kernel 

The Android platform is based on the Linux kernel. 

The Android Runtime (ART), for example, depends 

on the Linux kernel for basic functionalities, 

including multi-threading and low-level memory 

management. The Linux kernel helps Android to take 

advantage of core security features and encourages 

handset makers to build hardware drivers for well-

known kernel. Android uses a sophisticated version 

with some special additions to the Linux Kernel. 

These includes wake-locks, a memory protection 

scheme that is more proactive in saving memory, the 

Binder IPC driver, and other functionality that are 

essential for a mobile embedded platform such as 

Android. 

2.3 Native C/C++ Libraries 

Many core components and services of the Android 

system, such as ART and HAL, are developed from 

native code, which require native libraries written in 

C and C++. Mostly these are external libraries with 

only slight improvements such as OpenSSL, WebKit 

and bzip2. The Android platform provides Java 

framework APIs to expose applications to some of 

those native libraries’ functionality. You can use the 

Android NDK to use any of these native application 

libraries directly from your native code if you are 

creating an app that requires C or C++ code. 

2.4 Android Application 

Mobile apps are delivered as APK files. APK files 

are signed ZIP files that comprises the byte code of 

the application along with all its data, tools, third-

party libraries and a manifest file describing the 

detail functionality of the application. Permissions for 

files in an application are then registered so that only 

the application itself can able to access them. In 

addition, every program is given its own Virtual 

Machine when it is started which ensures code is 

segregated from other applications 

 

 
 

Fig 1: K-nearest neighbour 

K-nearest neighbour is a distance based classification 

technique in which new data points are classified by 

looking at their k- number of neighbours. The new 

data point is being associated to the class which has 

majority among the entire k neighbours. Thus 

decision boundary of majority class is improved by 

some margin. This process continues till all the points 

are being classified. KNN has been used in statistical 

estimation and pattern recognition already in the 

beginning of 1970’s as a non-parametric technique. 

3. Proposed System 
3.1 System Analysis: 

The literature contains various methods which adapt 

different strategies to detect malware applications. 

Basically most of the Android malware detection 

work can be grouped in two categories, static analysis 

and dynamic analysis. Both approaches have their 

advantages and disadvantages as Static analysis is 

unrealistic and vulnerable to obfuscation where as 

dynamic analysis is generally faster as compared to 

static analysis and less resource intensive but requires 

change in kernel of the operating system. Some other 

methods combine static and dynamic analysis, known 
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as hybrid analysis, to improve detection accuracy. 

Along with this, there are some new approaches to 

malware detection using device-based low-

monitorable features. Below, we give a quick review 

of existing approaches that belong to these 

categories. In this segment, we also address the work 

done using the identification of behavioral and 

signature based malware. 

Chin et al. proposed a method called Comdroid 

which is used for detecting the malicious application 

using communication-based vulnerabilities in 

Android. In addition to an open API, the Android 

operating system also features a rich inter application 

message passing system for transferring messages 

between applications. This promotes cooperation 

between applications and reduces the burden on 

developers by encouraging reuse of the components. 

Unfortunately, the passing of message is also the 

subject of an application attack. So Comdroid utilize 

this concept and analyze the interaction between 

Android application and determine Security threats in 

application modules. 

 
Fig 2: Architecture Diagram 

The fig 2 represents a comprehensive machine 

learning workflow pipeline designed to ensure robust 

model development and evaluation. The process 

begins with loading CSV data, followed by data 

preprocessing and splitting into training and test sets. 

Feature engineering is then applied to enhance the 

dataset, after which the SMOTE (Synthetic Minority 

Over-sampling Technique) method is used to balance 

class distributions in cases of imbalanced datasets. 

Next, model selection is carried out through grid 

search, which systematically tests different 

combinations of hyperparameters. Hyperparameter 

tuning and cross-validation, particularly 10-fold 

cross-validation, are employed to fine-tune the model 

and ensure it performs well on unseen data. Once the 

optimal model is selected, it is trained on the full 

training dataset. The model is then evaluated using 

metrics such as RMSE (Root Mean Square Error), 

MAE (Mean Absolute Error), and correlation scores. 

After evaluation, the model makes predictions, which 

can be saved or reused later. The results are 

visualized using plots, and a final analysis is 

presented using swing-out plots to display key 

findings. The entire workflow integrates key 

components such as linear regression (including 

ordinal regression), SMOTE filtering for class 

balance, and advanced evaluation techniques, making 

it a reliable and efficient end-to-end machine learning 

process. 

3.2 Evaluation Metrix:z 

The recall or true positive rate (TPR) is defined as 

 

Recall=
𝑇𝑃𝑇𝑃+𝐹  (1) 

The accuracy is defined as 

Accuracy=       (2) 

     

The F1-score is defined as 
 

   (3) 

3.3 Dataset: 

The dataset  used in this work is provided by the 

University of Ben-Gurion, called SherLock dataset. 

This significant smartphone data is generated from a 

continuing long- term data collection experiment by 

providing Samsung Galaxy S5 to 50 volunteers. The 

two Smartphone agents are involved in this data 

collection experiment: SherLock and Moriarty. 

Sherlock: SherLock is a data collection agent which 

captures various device metrics (such as battery usage, 

CPU usage and memory usage etc.) from a wide range 

of sensors and applications at a high sampling rate. 

Moriarty: Moriarty perpetrates varied cyber attacks 

on the user and records its activities in order to 

provide labels to SherLock dataset. 

The primary objective of the dataset is to help safety 

professionals and research groups to develop a 

innovative methods to detect malicious behavior in 

smartphones implicitly in those devices where sensor 

data can be accessed without the privileges of the 

superuser(root). 

FNFPTNTP

TNTP

+++
+

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol 25 Issue 06, JUNE, 2025

ISSN No: 2250-3676 www.ijesat.com Page 53 of 56



The Sherlock dataset is organized into form of a  

probe. A probe is a data table in which multiple 

sensors sharing the same interval are grouped to 

collect the data. The dataset is decomposed into 15 

different probes. Of the 15 probes, 8 are PULL 

probes, which captures sensor data in fixed time 

interval and 7 are PUSH probes which captures sensor 

data as soon as the new information arrives. PULL 

probes are those table that are sampled at regular 

frequency. For example system metrics is collected 

in every 5 seconds and therefore recorded in T4 PULL 

probe. The various PULL 

probes, which provide different information, are 

explained below. 

⚫ T0 probe: Contains Telephone, System, and 

Hardware Information. 

⚫ T1 probe: Contains Location, Cell tower, Wi-fi, 

and Bluetooth scan information. 

⚫ T2 probe: Contains Accelerometer, Gyroscope, 

and Magnetic field information. 

⚫ T3 probe: Contains information about audio and 

light data. 

⚫ T4 probe: Contains CPU, memory, Network 

traffic, I/O interrupts etc. information. 

⚫ App probe: Contains information like memory, 

CPU, etc. for each running app. 

PUSH probes are those table which are sampled at the 

occurrence of specific events. For example, as soon as 

a new SMS message arrived it was recorded by the 

SMS PUSH probe instantly. There are various PUSH 

probes which provides different information are 

explained below. • App package : Contains information about 

installed, updated and removed apps. • Broadcast : Contains information about 

Broadcast intent. • Call log : Contains information about calls. • Moriarty : Contains information about 

Malware actions and Malware sessions. • SMS log : Contains information about SMS 

status. • Screen status: Contains information about 

screen on/off. 

4. Results: 

Table 1: Comparison of the performance of classification algorithms 

 

 

 

 

 

 

 

In order to evaluate the features obtained after the 

feature selection process, we apply the five selected 

classification models in this experiment as stated 

earlier, and examines their effectiveness using 

various performance metrics introduced earlier. The 

experiment intends to improve the results of Memon 

et al.  and performed using a balanced dataset having 

70% of data for training and 30% of data for testing 

the models. The results of the experiment, for all five 

classifiers, are presented in Table 2. The percentage 

accuracy achieved by all the five classifiers is 

presented in Fig. which shows that the XGBoost 

attains the highest classification accuracy of 93.25%, 

Random Forest attains the second- highest accuracy 

of 92.19%, and the Decision Tree achieves the third-

highest accuracy of 87.74%. The respective accuracy 

sore of KNN and Naive Bayes classifier is 84.22% 

and 70.79%. The methods used by our system and the 

one presented by Memon et al.  are very similar. 

Their system uses the features selected using the Chi-

Model TPR FPR FNR Prec

ision 

F1-

Scor

e 

Accu

racy 

AUC 

Naive 

Bayes 

62.5% 21.3% 37.5% 73.6

5% 

67.6

2% 

70.7

9% 

78.11% 

KNN 83.65% 15.23% 16.34% 83.9

5% 

83.8

0% 

84.2

2% 

91.48% 

Decision 

Tree 

87.74% 12.25% 12.25% 87.2

1% 

87.4

7% 

87.7

4% 

87.72% 

Random 

Forest 

92.42% 8.01% 7.57% 91.6

5% 

92.0

4% 

92.1

9% 

97.56% 

XGBoost 93.02% 6.52% 7.0% 93.1

4% 

93.0

8% 

93.2

5% 

97.87% 
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square method having a p-value > 0.05, whereas our 

system uses the top 40 features selected using the 

mutual information gain method. We show that the 

futures selected using the mutual information gain 

method gives the better result for the Android 

malware detection on the SherLock dataset as the 

highest accuracy achieved by our system using the 

XGBoost (Extreme Gradient Boosting) classifier is 

93.25%, whereas the highest accuracy achieved by 

Memon et al. [6] using Gradient Boosted Trees is 

90.24%. Our methods show the better result for the 

Random Forest also with an accuracy of 92.19% as 

compared to the accuracy of 89.67% reported by the 

same classifier in Memon et al. . However, the 

Decision Tree used by Memon et al.  obtained better 

results in terms of accuracy value 89.72% and FPR 

value 9.65% as compared to our approach having an 

accuracy value 87.74% and FPR value 12.25% using 

the same algorithm. FPR and FNR denotes the total 

misclassified records but FPR is not considered as 

critical as FNR because the latter directly indicates 

the undetected malware, whereas FPR indicates the 

benign apps that have been detected as malicious. So 

a low value of FPR and FNR is desirable to make our 

detection system more accurate and less time-

consuming. Fig.  shows the percentage value of FPR 

and FNR observed by all the classifiers. XGBoost has 

achieved the lowest FPR and FNR values compared 

to other algorithms, which is 6.5% and 7% 

respectively. The second- best performance is 

achieved by the Random Forest with an FPR of 8% 

and an FNR of 7.6%. 

 
Figure 3: Measure of Accuracy, FNR, and FPR for all 

five classifiers 

The FNR values achieved by the other classification 

models as shown in Fig. 3 is 37.5%, 16.3%, and 

12.3%, respectively for Naive Bayes, KNN, and 

Decision Tree classifier. Similarly, the FPR values 

achieved by the other classification models are also 

shown in Fig.3, which are 21.3%, 15.2%, and 12.2% 

respectively for Naive Bayes, KNN, and Decision 

Tree. From the results shown in Table 2, we conclude 

that the XGBoost classifier outperforms the other 

classification models in terms of the highest accuracy 

and the lowest FPR and FNR values, as it reduces the 

risk of undetected malware and lowers the false 

notification of malware detection. Comparing to 

Memon et al.  our approach shows a better 

performance in terms of FPR also as the lowest FPR 

value achieved in our proposed work is 6.52% using 

XGBoost classifier, whereas they achieved the lowest 

FPR of 9.2% using Gradient Boosted Trees. The 

Random Forest in our approach also shows a better 

FPR value of 8% compared to the FPR value of 

10.16% achieved by the same algorithm in Memon et 

al.  

 

Fig 4 : ROC curves for all five classifiers 

The Fig 4 represents the Further to assess and 

compare the detection performance of every selected 

classifier, the ROC curve and AUC values are 

computed and presented in Fig. 4 The ROC curves 

indicate that XGBoost and Random Forest have 

similar detection performance with a high value of 

TPR at a low value of FPR. The AUC values of the 

Random Forest and XGBoost classifier as shown in 

Fig. 4 are 97.6% and 97.9% respectively which are 

almost equal and hence both approaches have a 

similar detection performance. The detection 

performance of XGBoost shows a TPR of 0.93 at an 

FPR of 0.065 and Random Forest shows a TPR of 

0.92 at an FPR of 0.08. From Fig. 4, we conclude that 

the XGBoost and Random Forest have better 

detection performance in terms of ROC-AUC values 

compared to other classifiers. The performance of 

Random Forest is very effective with this dataset due 

to two reasons . First, the use of out-of-bag error as 

an estimate. 

For generalizing the error improves its performance. 

Second, being an ensemble classifier it prevents the 

overfitting of data as it yields the limited value of 

generalization error even after adding more trees to 

Random Forest. On the other hand, the performance 

of XGBoost is very effective, as it avoids the 
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overfitting of data, reduces error rate, and performs 

faster than other classifiers, due to regularization 

nature and parallel processing implementation . 

5. Conclusion and Future Work 
In this work, we have investigated the performance of 

various classifiers like naive bayes, knn, decision 

tree, random forest, and xgboost for android malware 

detection using low- privileged monitorable features. 

To train our model, we have used system-specific 

features selected using the mutual information gain 

method from the t4 probe sampled in the sherlock 

dataset. The results obtained in this work shows that 

the futures selected using the mutual information gain 

method gives the better result for the android 

malware detection on the sherlock dataset. The 

findings of this research show that the xgboost and 

random forest are the top two performers with the 

respective accuracy of 93.25% and 92.19%. Xgboost 

classifier is the most accurate in detecting the 

malware with 93% overall values of precision, recall, 

and accuracy. In terms of fnr and fpr values, xgboost 

also outperforms the other classifiers with respective 

values of 7.0% and 6.52%. Naive bayes, knn, and 

decision tree are not that effective as their accuracy 

score is 70.79%, 84.22%, and 87.74% respectively. If 

we consider the roc curves, the detection 

performance of xgboost is best with a tpr of 0.93 at 

an fpr of 0.065 and random forest has the second-best 

detection rate with a tpr of 0.92 at an fpr of 0.08, 

which indicates that xgboost has the better 

classification power. So in this research, we employ 

various machine learning techniques and conclude 

that xgboost and random forest classifiers are the top 

two performers for android malware detection. After 

all there is always some scope for the improvement in 

any work. In this work there is also a scope of 

improving the results by utilizing the large amount of 

data. Along with this there is also a scope of selecting 

the set of good features which helps in improving the 

detection accuracy. Further, data pre-processing can 

help to achieve a better result by removing the 

anomalous data. 
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